首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   43篇
  国内免费   47篇
化学   436篇
晶体学   5篇
力学   38篇
数学   5篇
物理学   253篇
  2023年   63篇
  2022年   16篇
  2021年   34篇
  2020年   56篇
  2019年   20篇
  2018年   24篇
  2017年   61篇
  2016年   59篇
  2015年   31篇
  2014年   37篇
  2013年   30篇
  2012年   39篇
  2011年   20篇
  2010年   36篇
  2009年   26篇
  2008年   11篇
  2007年   17篇
  2006年   18篇
  2005年   15篇
  2004年   10篇
  2003年   18篇
  2002年   14篇
  2001年   32篇
  2000年   15篇
  1999年   22篇
  1998年   13篇
排序方式: 共有737条查询结果,搜索用时 92 毫秒
1.
2.
3.
采用施加压力的方法将聚苯硫醚熔体凝固,凝固后获得的聚苯硫醚样品经过降温和卸压后在常温常压下回收. X射线衍射和差示扫描量热分析表明:约20 ms时间的快速压缩过程可以抑制熔体结晶,制备出非晶态聚苯硫醚块材,样品的表面及中心都是非晶态.非晶态聚苯硫醚的玻璃化转变温度和晶化温度分别为318和362 K.常压下的退火实验表明,非晶态聚苯硫醚在425 K等温结晶的产物为正交相晶型.压致凝固法中熔体的凝固不是靠温度变化,而是靠压力变化,样品表面和内部处在一致的温度下同时受压凝固,避免了热传导对非晶尺寸的影响,因此非常有利于获得结构均匀的大尺寸非晶态材料.  相似文献   
4.
Organic solar cell of silol dithiophene based D2-A-D1-A-D2/PC71BM (D: donor part; A: acceptor part; 1 and 2 denote different units) possesses promising power conversion efficiency. Researchers have studied D2-A-D1-A-D2 molecules carefully, including the effects of the different number of terminal thiophenes, the different central moiety (D1), and the length of the alkyl chain. However, there are few investigations, especially theoretical studies, on the influences of different A (acceptor) units on the properties of D2-A-D1-A-D2 molecule. In the present work, we have designed and modeled five new D2-A-D1-A-D2 (D2 = bithiophene and D1 = silol dithiophene) donors by changing A units (A = diketopyrrolopyrrole, naphtho[1,2-c:5,6-c′]bis[1,2,5]thiadiazole, 5-fluoro-2,1,3-benzoselenadiazole, benzobisthiadiazole, and thiazolo[5,4-d]thiazole). We have applied density functional theory (DFT) and time-dependent DFT to predict their ground-state electronic structures and the UV–vis spectra, and the open circuit voltages (Vocs) of organic solar cells of D2-A-D1-A-D2/PC71BM. Based on the calculated results, we find that bithiophene thiazolo[5,4-d]thiazole siloldithiophene (BTTS) (D2 = bithiophene, A = thiazolo[5,4-d]thiazole, D1 = silol dithiophene) possesses the highest lowest unoccupied molecular orbital (−2.60 eV) and the lowest highest occupied molecular orbital (−5.33 eV) energies, and the strongest absorption in the visible region. Besides, the solar cell of BTTS/PC71BM has the highest Voc of 1.02 V. These results indicate that it may be a promising donor. In contrast, bithiophene benzobisthiadiazole siloldithiophene (BBBS) (A = benzobisthiadiazole) has low absorption strength in the visible region, which indicates that it may not be a suitable donor material.  相似文献   
5.
In the present work, a visible-light-driven Ag/AgBr/ZnFe2O4 photocatalyst has been successfully synthesized via a deposition–precipitation and photoreduction method. The crystal structure, chemical composition, morphology and optical properties of the as-prepared nanocomposites were characterized by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscope, UV–vis diffuse reflectance spectroscopy and photoluminescence. The photocatalytic activities of the Ag/AgBr/ZnFe2O4 nanocomposites were evaluated through the photodegradation of gaseous toluene and methyl orange (MO) under visible light. The results revealed that the as-prepared Ag/AgBr/ZnFe2O4 nanocomposite exhibited excellent photocatalytic activity. The degrading efficiency of MO could still reach 90% after four cycles, and the Ag/AgBr/ZnFe2O4 nanocomposite could be recycled easily by a magnet. Additionally, the enhanced photocatalytic mechanism was discussed according to the trapping experiments, which indicated that the photo-generated holes (h+) and •O2 played important roles in photodegradation process. At last, a possible photocatalytic oxidation pathways of toluene was proposed based on the results of GC–MS. The Ag/AgBr/ZnFe2O4 composites showed potential application for efficient removal of organic pollutant.  相似文献   
6.
Wang  Qianqian  Zhou  Rui  Liu  Simeng  Sethupathy  Sivasamy  Liu  Jun  Sun  Jianzhong  Zou  Lihua  Zhu  Qianqian 《Cellulose (London, England)》2022,29(8):4287-4321
Cellulose - Templated synthesis and assembly for nanostructured materials with tailored properties have received considerable attention. The powerful templates with predefined structures can guide...  相似文献   
7.
Organic–inorganic hybrid perovskite solar cells have attracted great attention due to their high power conversion efficiency and low cost. However, an anomalous hysteresis effect exists in the perovskite solar cells, especially with TiO2 as the n-type electron extraction layer. In this communication, we prepare two kinds of TiO2 compact layers using Atomic Layer Deposition (ALD) and Spin-Coating (SC) methods and compare their influences on the hysteresis effect. By efficiency comparison and AC impedance spectroscopy study, we find that the thickness and morphology of compact layer have a significant influence on the hysteresis effect. Compared to the SC approach, the ALD prepared compact layer is ultra-thin with uniform morphology and shows small interfacial capacitance and large recombination resistance, meaning reduced interfacial charge accumulation and accelerated electron transport, which would relieve the hysteresis effect.  相似文献   
8.
9.
《中国化学快报》2023,34(8):107930
To achieve real-time monitoring of humidity in various applications, we prepared facile and ultra-thin CoAl layered double hydroxide (CoAl LDH) nanosheets to engineer quartz crystal microbalances (QCM). The characteristics of CoAl LDH were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectric spectroscopy (XPS), Brunauer–Emmett–Telle (BET), atomic force microscopy (AFM) and zeta potential. Due to their large specific surface area and abundant hydroxyl groups, CoAl LDH nanosheets exhibit good humidity sensing performance. In a range of 11.3% and 97.6% relative humidity (RH), the sensor behaved an ultrahigh sensitivity (127.8 Hz/%RH), fast response (9.1 s) and recovery time (3.1 s), low hysteresis (3.1%RH), good linearity (R2 = 0.9993), stability and selectivity. Besides, the sensor can recover the initial response frequency after being wetted by deionized water, revealing superior self-recovery ability under high humidity. Based on in-situ Fourier transform infrared spectroscopy (FT-IR), the adsorption mechanism of CoAl LDH toward water molecules was explored. The QCM sensor can distinguish different respiratory states of people and wetting degree of fingers, as well as monitor the humidity in vegetable packaging, suggesting excellent properties and a promising application in humidity sensing.  相似文献   
10.
《中国化学快报》2023,34(11):108263
The sluggish conversion kinetics and shuttle effect of lithium polysulfides (LiPSs) severely hamper the commercialization of lithium–sulfur batteries. Numerous electrocatalysts have been used to address these issues, amongst which, transition metal dichalcogenides have shown excellent catalytic performance in the study of lithium–sulfur batteries. Note that dichalcogenides in different phases have different catalytic properties, and such catalytic materials in different phases have a prominent impact on the performance of lithium–sulfur batteries. Herein, 1T-phase rich MoSe2 (T-MoSe2) nanosheets are synthesized and used to catalyze the conversion of LiPSs. Compared with the 2H-phase rich MoSe2 (H-MoSe2) nanosheets, the T-MoSe2 nanosheets significantly accelerate the liquid phase transformation of LiPSs and the nucleation process of Li2S. In-situ Raman and X-ray photoelectron spectroscopy (XPS) find that T-MoSe2 effectively captures LiPSs through the formation of Mo-S and Li-Se bonds, and simultaneously achieves fast catalytic conversion of LiPSs. The lithium–sulfur batteries with T-MoSe2 functionalized separators display a fantastic rate performance of 770.1 mAh/g at 3 C and wonderful cycling stability, with a capacity decay rate as low as 0.065% during 400 cycles at 1 C. This work offers a novel perspective for the rational design of selenide electrocatalysts in lithium–sulfur chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号